5x^2-20=10x

Simple and best practice solution for 5x^2-20=10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2-20=10x equation:



5x^2-20=10x
We move all terms to the left:
5x^2-20-(10x)=0
a = 5; b = -10; c = -20;
Δ = b2-4ac
Δ = -102-4·5·(-20)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{5}}{2*5}=\frac{10-10\sqrt{5}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{5}}{2*5}=\frac{10+10\sqrt{5}}{10} $

See similar equations:

| 6/11(x+5=6 | | 3y+1-15=180 | | (-2y/5)+(7/10)-(y/2)=(1/5)+(y/10) | | |5y+5|=25 | | -(2y)/(5)+(7)/(10)-(y)/(2)=(1)/(5)+(y)/(10) | | -2/3x+-10=14 | | 1085/x=2275/x | | (2x+12)+2x+60=180 | | 2x=6=86 | | 18x^2-26x-320=0 | | 8x-26=60+6x | | 1.x+29=67 | | 92=d+34 | | (2x+12)+60=180 | | -(x^2-2)/(x^2+2)^2=0 | | 2/9x=7 | | 2(x-1)+8=4(x-5) | | 24b^2-138b-210=0 | | (x-3/2)+1/3=4x/5 | | 10=2(p-4) | | 14-2=c | | -7/13x=5/2 | | 76.9=28.2n+20.5 | | 4/5x+6/5=-12 | | X^2=3x+88 | | x/100=3/5 | | x2=3x+88 | | H=-16t^2+910 | | 4x-3=2x-5÷2 | | -4(k-6)=12 | | 2/7+a=45/6 | | 4x+2/7=3 |

Equations solver categories